• Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Trepo etusivu
  • Trepo
  • Artikkelit
  • Näytä viite
  •   Trepo etusivu
  • Trepo
  • Artikkelit
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of module detection algorithms in protein networks and investigation of the biological meaning of predicted modules

Tripathi, Shailesh; Moutari, Salissou; Dehmer, Matthias; Emmert-Streib, Frank (2016)

 
Tweet Linkki tiedostoon
 
Linkki tiedostoon
Avaa tiedosto
comparison_of_module_detection_2016.pdf (3.231Mt)
Lataukset: 



Tripathi, Shailesh
Moutari, Salissou
Dehmer, Matthias
Emmert-Streib, Frank
2016

BMC Bioinformatics 17 1
129
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1186/s12859-016-0979-8
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi:uta-201604211454

Kuvaus

BioMed Central open access
Tiivistelmä
Background

It is generally acknowledged that a functional understanding of a biological system can only be obtained by an understanding of the collective of molecular interactions in form of biological networks. Protein networks are one particular network type of special importance, because proteins form the functional base units of every biological cell. On a mesoscopic level of protein networks, modules are of significant importance because these building blocks may be the next elementary functional level above individual proteins allowing to gain insight into fundamental organizational principles of biological cells.
Results

In this paper, we provide a comparative analysis of five popular and four novel module detection algorithms. We study these module prediction methods for simulated benchmark networks as well as 10 biological protein interaction networks (PINs). A particular focus of our analysis is placed on the biological meaning of the predicted modules by utilizing the Gene Ontology (GO) database as gold standard for the definition of biological processes. Furthermore, we investigate the robustness of the results by perturbing the PINs simulating in this way our incomplete knowledge of protein networks.
Conclusions

Overall, our study reveals that there is a large heterogeneity among the different module prediction algorithms if one zooms-in the biological level of biological processes in the form of GO terms and all methods are severely affected by a slight perturbation of the networks. However, we also find pathways that are enriched in multiple modules, which could provide important information about the hierarchical organization of the system.
Kokoelmat
  • Artikkelit [4998]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja