Comparison of Picocell and DAS Configuration with HSPA Evolution
Shan, Haroon (2011)
Shan, Haroon
2011
Sähkötekniikan koulutusohjelma
Tieto- ja sähkötekniikan tiedekunta
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2011-03-09
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201103291055
https://urn.fi/URN:NBN:fi:tty-201103291055
Tiivistelmä
As demand of mobile data services has grown exponentially, it has increased pressure on mobile operators to enhance capacity in dense urban areas. Usage of internet and services related to mobile network has grown up. UMTS specification has been updated in order to cope with an increased amount of mobile data traffic. These upgrades and releases are based on international standards. HSDPA and HSUPA technologies are previous upgrades of UMTS network but now HSPA Evolution (HSPA+) is the upgraded version for UMTS. HSPA+ improves performance of mobile data transmission in downlink direction.
Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators. It has been forecasted that amount of data users will increase in future and this will set new challenges for mobile operators. The network is planned in such a way that more capacity is provided to places where more users are present. Most of the network traffic in dense urban area is generated by indoor users. Indoor planning is mostly done with multiple picocells or DAS configuration. The main differences between these two configurations are interference, total capacity, cost of the equipment and implementation.
In this Master’s thesis, the main focus is to compare picocells and DAS configuration for HSPA+ by simulations and measurements. Several mobile terminals were used to generate low and high loads for HSPA+ network. These comparisons were made by analyzing the results for signal to interference ratio, total network throughput and several other indicators. The results showed that DAS outperforms picocells in low/high load conditions in terms of SIR, cell throughput and modulation technique. DAS is good choice for medium sized building due to handover free regions and smooth coverage. /Kir11
Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators. It has been forecasted that amount of data users will increase in future and this will set new challenges for mobile operators. The network is planned in such a way that more capacity is provided to places where more users are present. Most of the network traffic in dense urban area is generated by indoor users. Indoor planning is mostly done with multiple picocells or DAS configuration. The main differences between these two configurations are interference, total capacity, cost of the equipment and implementation.
In this Master’s thesis, the main focus is to compare picocells and DAS configuration for HSPA+ by simulations and measurements. Several mobile terminals were used to generate low and high loads for HSPA+ network. These comparisons were made by analyzing the results for signal to interference ratio, total network throughput and several other indicators. The results showed that DAS outperforms picocells in low/high load conditions in terms of SIR, cell throughput and modulation technique. DAS is good choice for medium sized building due to handover free regions and smooth coverage. /Kir11