Effects of Time Synchronization Errors in IoT Networks
Zeyeum, Justin Njimgou (2019)
Zeyeum, Justin Njimgou
2019
Electrical Engineering
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2019-05-22
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201905211687
https://urn.fi/URN:NBN:fi:tty-201905211687
Tiivistelmä
Internet of Things is a term referring to the wireless connection of people and devices, briefly referred to as ‘things’. The growth of technology has become so rapid, that people are finding various ways and means to communicate to each other in a fast and reliable way. Industries and other organizations such as hospitals, military, schools and so on, are demanding better, easy and cheaper way to communicate or pass out information.
Time and frequency synchronization are basic demands for all wireless communication system to work accurately. In time synchronization, the receiver terminal determines the correct time at which to sample the incoming signal. For two or more systems to function at same time with high speed, accuracy and reliability, they must be well synchronized, and time sensitive enough so that it will not experience failure at some point in time.
This thesis focuses on the characteristics of IoT technologies, how time-sensitive an IoT network can be, and what time and frequency synchronization solutions there exist. A simulation study is also performed using Binary Phase Shift Keying (BPSK) modulation and Narrowband (NB) and Ultra-Narrowband (UNB) signals.
The simulation-based analysis is done with three error models (constant, random and clock) using MATLAB simulation, where a plot of Bit-Error-Rate (BER) versus Signal-to-Noise-Ratio (SNR) is drawn to investigate the effects of the time synchronization errors with the NB and UNB signals.
Time and frequency synchronization are basic demands for all wireless communication system to work accurately. In time synchronization, the receiver terminal determines the correct time at which to sample the incoming signal. For two or more systems to function at same time with high speed, accuracy and reliability, they must be well synchronized, and time sensitive enough so that it will not experience failure at some point in time.
This thesis focuses on the characteristics of IoT technologies, how time-sensitive an IoT network can be, and what time and frequency synchronization solutions there exist. A simulation study is also performed using Binary Phase Shift Keying (BPSK) modulation and Narrowband (NB) and Ultra-Narrowband (UNB) signals.
The simulation-based analysis is done with three error models (constant, random and clock) using MATLAB simulation, where a plot of Bit-Error-Rate (BER) versus Signal-to-Noise-Ratio (SNR) is drawn to investigate the effects of the time synchronization errors with the NB and UNB signals.