Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Methods for Patient Phenotyping from Electronic Health Records

Yang, Zhen (2019)

 
Avaa tiedosto
ZhenYang.pdf (1.185Mt)
Lataukset: 



Yang, Zhen
2019

Information Technology
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2019-05-20
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201905031480
Tiivistelmä
In this MSc thesis we employed convolutional neural network based architectures in classifying free-form discharge summaries from electronic health records in the Medical Information Mart for Intensive Care III database. We intended to investigate how well deep learning models can perform in patient phenotyping tasks using unstructured data.
We based our work on the previous work done by Gehrmann, Sebastian, et al. in their paper "Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives". We performed our tasks first by replicating their results using slightly different implementation details, then we extended the network architecture they used in their work, and finally we compared the results of our architecture and their architecture.
The main work of this thesis is the extra sentence level network that we added to the network architecture we replicated. In our network architecture, we fed not only the word level but also the sentence level inputs to the networks, thus making the networks able to learn features from combinations of nearby sentences.
Our experiments have shown our network architecture had a better performance over the original network architecture. It gave better results on all the F1 scores for all phenotypes, we also saw an overall improvement on ROCAUC scores. This indicates that the networks can benefit from our sentence level input to better understand the unstructured data from eHRs.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40481]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste