Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time Target Tracking and Following with UR5 Collaborative Robot Arm

Teke, Burak (2018)

 
Avaa tiedosto
Teke.pdf (21.58Mt)
Lataukset: 



Teke, Burak
2018

Tietotekniikka
Tieto- ja sähkötekniikan tiedekunta - Faculty of Computing and Electrical Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2018-06-06
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201805281873
Tiivistelmä
The rise of the camera usage and their availability give opportunities for developing robotics applications and computer vision applications. Especially, recent development in depth sensing (e.g., Microsoft Kinect) allows development of new methods for Human Robot Interaction (HRI) field. Moreover, Collaborative robots (co-bots) are adapted for the manufacturing industry.

This thesis focuses on HRI using the capabilities of Microsoft Kinect, Universal Robot-5 (UR5) and Robot Operating System (ROS). In this particular study, the movement of a fingertip is perceived and the same movement is repeated on the robot side. Seamless cooperation, accurate trajectory and safety during the collaboration are the most important parts of the HRI. The study aims to recognize and track the fingertip accurately and to transform it as the motion of UR5. It also aims to improve the motion performance of UR5 and interaction efficiency during collaboration.

In the experimental part, nearest-point approach is used via Kinect sensor's depth image (RGB-D). The approach is based on the Euclidean distance which has robust properties against different environments. Moreover, Point Cloud Library (PCL) and its built-in filters are used for processing the depth data. After the depth data provided via Microsoft Kinect have been processed, the difference of the nearest points is transmitted to the robot via ROS. On the robot side, MoveIt! motion planner is used for the smooth trajectory. Once the data has been processed successfully and the motion code has been implemented without bugs, 84.18% total accuracy was achieved. After the improvements in motion planning and data processing, the total accuracy was increased to 94.14%. Lastly, the latency was reduced from 3-4 seconds to 0.14 seconds.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40481]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste