Analysis of Current State of The Art of RFID IC Chips
Munna, Mohammed Ashraful Islam (2018)
Munna, Mohammed Ashraful Islam
2018
Information Technology
Tieto- ja sähkötekniikan tiedekunta - Faculty of Computing and Electrical Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2018-06-06
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201805221759
https://urn.fi/URN:NBN:fi:tty-201805221759
Tiivistelmä
Radio Frequency Identification (RFID) is a constantly developing technology particularly in the ultra-high-frequency (UHF) band for its long operating range, power efficiency, and maintenance-free characteristics. It has been successfully developed for many applications already, that includes identification, sensing, tracking, monitoring, etc.
In terms of tag, the integrated circuit (IC) or chip play an essential part in the functionality of the tag, where logical information is programmed into. Nowadays, the chips come in a variety of memory options, sensitivity, supported protocols, with an optional battery-assisted mode, additional commands, and features.
There are various methods that are followed to fabricate RFID tags, i.e. inkjet-printing, painting, 3D printing, etching, etc. On the way of completion of these procedures, some of the methods involve the use of chemicals, producing waste, which is unfavorable in respect of the cost, and as well as the environment.
In addition, the substrate impacts tag’s performance. If the tag is going to be attached for instance, on a metal surface the radiation properties of the tag antenna would experience changes, as the electromagnetic waves will reflect on the metal surface, which will basically degrade tag’s performance.
Maintaining multiple applications on a single chip has become common to a certain extent. It requires additional power than usual, which is an issue for passive tags. In order to overcome this hurdle, energy harvesting system is required, which is going to suffice the need for a power source.
In this paper, the functionalities and applications of the RFID chips have been reviewed and some suggestions have been proposed on how RFID can be commercially manufactured, in terms of fabrication methods, supplying enough power for applications, and ensuring security of the tagged object.
In terms of tag, the integrated circuit (IC) or chip play an essential part in the functionality of the tag, where logical information is programmed into. Nowadays, the chips come in a variety of memory options, sensitivity, supported protocols, with an optional battery-assisted mode, additional commands, and features.
There are various methods that are followed to fabricate RFID tags, i.e. inkjet-printing, painting, 3D printing, etching, etc. On the way of completion of these procedures, some of the methods involve the use of chemicals, producing waste, which is unfavorable in respect of the cost, and as well as the environment.
In addition, the substrate impacts tag’s performance. If the tag is going to be attached for instance, on a metal surface the radiation properties of the tag antenna would experience changes, as the electromagnetic waves will reflect on the metal surface, which will basically degrade tag’s performance.
Maintaining multiple applications on a single chip has become common to a certain extent. It requires additional power than usual, which is an issue for passive tags. In order to overcome this hurdle, energy harvesting system is required, which is going to suffice the need for a power source.
In this paper, the functionalities and applications of the RFID chips have been reviewed and some suggestions have been proposed on how RFID can be commercially manufactured, in terms of fabrication methods, supplying enough power for applications, and ensuring security of the tagged object.