Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crowdsourcing error impact on indoor positioning

Peng, Zhe (2017)

 
Avaa tiedosto
Peng.pdf (3.600Mt)
Lataukset: 



Peng, Zhe
2017

Electrical Engineering
Tieto- ja sähkötekniikan tiedekunta - Faculty of Computing and Electrical Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2017-12-07
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201711222214
Tiivistelmä
Nowadays, with the rapid development of communication technology, plenty of new applications of 5G and IoT have appeared which requires high accuracy positioning skills. Wi-Fi based fingerprinting method is one of the most promising approaches for indoor positioning. Crowdsourcing is an appropriate fingerprint data collecting method on one hand. However, it is vulnerable to different kinds of crowdsourcing errors which add errors to the fingerprint database and can decrease the accuracy of positioning on another hand.
The main target of this thesis is to statistically analyze the behavior of the crowdsourcing data collected by different devices, and the effects of different kinds of intentionally or unintentionally added errors through MATLAB.
From the analysis results, it can be concluded that two different kinds of manually added errors perform complete differently. Data modified with all constant RSS values, out of author’s expectation, achieves a decent accuracy similar to the original data. While data modified with only position error shows a behavior that the positioning accuracy drops with the increase of modified data proportion. Most of the distributions are closest to the Burr type XII distribution, which is particularly useful for modeling histograms.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40800]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste