A real-time packet scheduling system for a 6LoWPAN industrial application
Santillán Martínez, Gerardo (2013)
Santillán Martínez, Gerardo
2013
Master's Degree Programme in Machine Automation
Teknisten tieteiden tiedekunta - Faculty of Engineering Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2013-10-09
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201310241392
https://urn.fi/URN:NBN:fi:tty-201310241392
Tiivistelmä
Nowadays, the industrial Wireless Sensor Networks (WSN) are crucial for the monitoring and control of the modern smart factory floor that is relying on them for critical applications and tasks that were performed by wired systems in the past. For this reason, it is required that the transmission mechanisms of wireless sensor networks are efficient and robust and that they guarantee realtime responses with low data losses. Furthermore, it is required that they utilize common networking standards, such as the Internet Protocol (IP), that provides interoperability with already existing infrastructures and offers widely tested security and transmission control protocols.
The theoretical part of this document focuses on the description of the current panorama of the industrial WSN, its applications, design challenges and standardizations. It describes the 6LoWPAN standard and the wireless transmission technology that it uses for its lower layers, the IEEE 802.15.4 protocol. Later, it describes the principles behind the wireless scheduling, a state-of-the-art in the IEEE 802.15.4 scheduled channel access and the features of the most used operating systems for WSN.
The practical part presents the real-time packet scheduling system for a 6LoWPAN industrial application proposed by this thesis work that adapts the HSDPA scheduling mechanisms to the IEEE 802.15.4 beacon-enabled mode. The system implemented manages the channel access by allocating Guaranteed Time Slots to sensor nodes according to the priority given by three scheduling algorithms that can be selected according to the traffic condition of the network. The system proposed was programmed using Contiki OS. It is based on the eSONIA 6LoWPAN firmware developed for the European Research Project and it was deployed on the FAST WSN for testing. The results, discussion and conclusions are documented at the final sections of this part.
The theoretical part of this document focuses on the description of the current panorama of the industrial WSN, its applications, design challenges and standardizations. It describes the 6LoWPAN standard and the wireless transmission technology that it uses for its lower layers, the IEEE 802.15.4 protocol. Later, it describes the principles behind the wireless scheduling, a state-of-the-art in the IEEE 802.15.4 scheduled channel access and the features of the most used operating systems for WSN.
The practical part presents the real-time packet scheduling system for a 6LoWPAN industrial application proposed by this thesis work that adapts the HSDPA scheduling mechanisms to the IEEE 802.15.4 beacon-enabled mode. The system implemented manages the channel access by allocating Guaranteed Time Slots to sensor nodes according to the priority given by three scheduling algorithms that can be selected according to the traffic condition of the network. The system proposed was programmed using Contiki OS. It is based on the eSONIA 6LoWPAN firmware developed for the European Research Project and it was deployed on the FAST WSN for testing. The results, discussion and conclusions are documented at the final sections of this part.