Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smart Antenna Grid for Outdoor Distributed System

Kivirinta, Rami (2013)

 
Avaa tiedosto
kivirinta.pdf (4.786Mt)
Lataukset: 



Kivirinta, Rami
2013

Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma
Tieto- ja sähkötekniikan tiedekunta - Faculty of Computing and Electrical Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2013-09-04
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201309131348
Tiivistelmä
The increasing use of smart phones and other connected devices has increased the data capacity demand of wireless networks. The most common networks, the terrestrial cellular networks, have evolved from simple 2nd generation wireless speech-oriented networks to 4th generation high-speed data dedicated networks. Along with this technological evolution the cellular network topology has changed, as well. Cell sizes have become smaller and smaller.
In order to battle the downsides of smaller cells, large amount of equipment and handover overhead, an outdoor distributed antenna system has been introduced as a co-existing alternative to small cells. Previous studies show that capacity and signal level gains are obtained by jointly processing the information from all the antennas.
As a further improvement to the Outdoor Distributed Antenna System the antennas could be replaced with smart antennas which have their own benefits. The smart grid concept was presented and the possible synergy gains were discussed. The possible benefits were beamforming from multiple antennas, angular separation variability per antenna, and the use of single path multiple access and single path single access schemes.
The radio environment was simulated using 3D ray tracing in order to obtain accurate path specific data. The simulation was set in an environment of a simple Manhattan grid with six antennas per cell, and utilised an LTE frequency of 1800 MHz.
The results show that the microcellular environment is a versatile environment with very challenging locations for direction of arrival estimation and single path communication. At worst, the angular separation can be around 0.30° which is very small.
The effect on the signal-to-noise ratio of the traditional beamforming in conjunction with antenna selection strategies is worth studying. Also the novel smart antenna technologies seem implementable in terms of angular separation requirements.
Further investigations are needed especially in the time domain, so that capacity estimations can be made and the estimation error effect in this type of environment can be quantified.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [41201]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste