Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-supervised musical instrument recognition

Diment, Aleksandr (2013)

 
Avaa tiedosto
diment.pdf (810.8Kt)
Lataukset: 



Diment, Aleksandr
2013

Master's Degree Programme in Information Technology
Tieto- ja sähkötekniikan tiedekunta - Faculty of Computing and Electrical Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2013-06-05
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201306141238
Tiivistelmä
The application areas of music information retrieval have been gaining popularity over the last decades. Musical instrument recognition is an example of a specific research topic in the field. In this thesis, semi-supervised learning techniques are explored in the context of musical instrument recognition. The conventional approaches employed for musical instrument recognition rely on annotated data, i.e., example recordings of the target instruments with associated information about the target labels in order to perform training. This implies a highly laborious and tedious work of manually annotating the collected training data. The semi-supervised methods enable incorporating additional unannotated data into training. Such data consists of merely the recordings of the instruments and is therefore significantly easier to acquire. Hence, these methods allow keeping the overall development cost at the same level while notably improving the performance of a system.
The implemented musical instrument recognition system utilises the mixture model semi-supervised learning scheme in the form of two EM-based algorithms. Furthermore, upgraded versions, namely, the additional labelled data weighting and class-wise retraining, for the improved performance and convergence criteria in terms of the particular classification scenario are proposed. The evaluation is performed on sets consisting of four and ten instruments and yields the overall average recognition accuracy rates of 95.3 and 68.4%, respectively. These correspond to the absolute gains of 6.1 and 9.7% compared to the initial, purely supervised cases. Additional experiments are conducted in terms of the effects of the proposed modifications, as well as the investigation of the optimal relative labelled dataset size. In general, the obtained performance improvement is quite noteworthy, and future research directions suggest to subsequently investigate the behaviour of the implemented algorithms along with the proposed and further extended approaches.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [36035]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste