A 3d Real-Time Monitoring System for a Production Line
García Pájaro, Héctor (2012)
García Pájaro, Héctor
2012
Automaatio-, kone- ja materiaalitekniikan tiedekunta - Faculty of Automation, Mechanical and Materials Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2012-06-06
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201206181197
https://urn.fi/URN:NBN:fi:tty-201206181197
Tiivistelmä
It is hypothesized than a transparent view of the factory floor, in real time, will provide grounds for achieving a better control over the factory assets, including maintenance activities and scheduling optimization. The main goal of this research is to provide a Real-Time 3D Monitoring of manufacturing systems by capitalizing the early 3D model created for simulation proposes and the eventualized information offered by the Factory Information Systems in the shape of web services via DPWS. In addition the monitoring application should be accessible via a web-based application allowing multi-viewers on multi-platform, including mobile ones.
The thesis discusses the background of Factory Monitoring and Visualization Systems, including 3D Modeling and Animation, and Web-based Applications. Then a robotized assembly line located at FAST-Lab. is presented for been used as the test bed of the implementation by the designed System. CATIA and DELMIA Software model the 3D view of the line assets. A method for importing to Unity3d Software is also developed and documented. The Unity Game engine produces the animation of the 3D models. Then, the Application is published as a web-based application running under Unity browser plugin. Lastly, an interface for the communication of the 3D virtual world and the line Sensors and Data Acquisition application is presented in order to achieve the Real-Time triggering of the events driven the 3D virtual representation of the assembly line.
The thesis discusses the background of Factory Monitoring and Visualization Systems, including 3D Modeling and Animation, and Web-based Applications. Then a robotized assembly line located at FAST-Lab. is presented for been used as the test bed of the implementation by the designed System. CATIA and DELMIA Software model the 3D view of the line assets. A method for importing to Unity3d Software is also developed and documented. The Unity Game engine produces the animation of the 3D models. Then, the Application is published as a web-based application running under Unity browser plugin. Lastly, an interface for the communication of the 3D virtual world and the line Sensors and Data Acquisition application is presented in order to achieve the Real-Time triggering of the events driven the 3D virtual representation of the assembly line.