Black-Scholes-optiohinnoittelumalli
KUITTINEN, JONNE (2012)
KUITTINEN, JONNE
2012
Matematiikka - Mathematics
Informaatiotieteiden yksikkö - School of Information Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2012-09-20
Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:uta-1-22904
https://urn.fi/urn:nbn:fi:uta-1-22904
Tiivistelmä
Optiot ovat yhä merkittävämpi osa rahoitusmarkkinoita, mutta niiden hinnoittelu nojaa edelleen pitkälti Black-Scholes-optiohinnoittelumalliin, joka esitettiin jo vuonna 1973. Rajoitteistaan huolimatta tämän mallin ymmärtäminen on erittäin tärkeää rahoitusalasta kiinnostuneille.
Tämän tutkielman tavoitteena on avata Black-Scholes-optiohinnoittelumallin matemaattista taustaa. Mallin matematiikan ymmärtämistä yritetään helpottaa erityisesti tuomalla esiin sen yhteys myöhemmin julkaistuun binomimalliin, joka voidaan nähdä Black-Scholes-optiohinnoitelumallin yksinkertaistuksena.
Tutkielma etenee seuraavasti. Aluksi käydään läpi optioihin liittyviä käsitteitä ja perustietoja. Sitten siirrytään optioiden hinnoitteluun binomimallin avulla, jossa osakkeen hinnalle annetaan askeleittain kaksi mahdollista arvoa ja tutkitaan askelmäärää nostaen miten option hinta käyttäytyy. Sen jälkeen esitellään osakkeen hinnan prosessi ja muut tarvittavat esitiedot Black-Scholes-optiohinnoittelukaavalle, jonka kaksi eri todistusta päättävät tutkielman.
Tämän tutkielman tavoitteena on avata Black-Scholes-optiohinnoittelumallin matemaattista taustaa. Mallin matematiikan ymmärtämistä yritetään helpottaa erityisesti tuomalla esiin sen yhteys myöhemmin julkaistuun binomimalliin, joka voidaan nähdä Black-Scholes-optiohinnoitelumallin yksinkertaistuksena.
Tutkielma etenee seuraavasti. Aluksi käydään läpi optioihin liittyviä käsitteitä ja perustietoja. Sitten siirrytään optioiden hinnoitteluun binomimallin avulla, jossa osakkeen hinnalle annetaan askeleittain kaksi mahdollista arvoa ja tutkitaan askelmäärää nostaen miten option hinta käyttäytyy. Sen jälkeen esitellään osakkeen hinnan prosessi ja muut tarvittavat esitiedot Black-Scholes-optiohinnoittelukaavalle, jonka kaksi eri todistusta päättävät tutkielman.