ARLTS1 and Prostate Cancer Risk - Analysis of Expression and Regulation
Siltanen, Sanna; Fischer, Daniel; Rantapero, Tommi; Laitinen, Virpi; Mpindi, John; Kallioniemi, Olli; Wahlfors, Tiina; Schleutker, Johanna (2013)
Siltanen, Sanna
Fischer, Daniel
Rantapero, Tommi
Laitinen, Virpi
Mpindi, John
Kallioniemi, Olli
Wahlfors, Tiina
Schleutker, Johanna
2013
Plos ONE 8 8
1-10
Biolääketieteellisen teknologian yksikkö - Institute of Biomedical Technology
Terveystieteiden yksikkö - School of Health Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:uta-201309061334
https://urn.fi/URN:NBN:fi:uta-201309061334
Kuvaus
Public Library of Science open access
Tiivistelmä
Prostate cancer (PCa) is a heterogeneous trait for which several susceptibility loci have been implicated by genome-wide linkage and association studies. The genomic region 13q14 is frequently deleted in tumour tissues of both sporadic and familial PCa patients and is consequently recognised as a possible locus of tumour suppressor gene(s). Deletions of this region have been found in many other cancers. Recently, we showed that homozygous carriers for the T442C variant of the ARLTS1 gene (ADP-ribosylation factor-like tumour suppressor protein 1 or ARL11, located at 13q14) are associated with an increased risk for both unselected and familial PCa. Furthermore, the variant T442C was observed in greater frequency among malignant tissue samples, PCa cell lines and xenografts, supporting its role in PCa tumourigenesis. In this study, 84 PCa cases and 15 controls were analysed for ARLTS1 expression status in blood-derived RNA. A statistically significant (p = 0.0037) decrease of ARLTS1 expression in PCa cases was detected. Regulation of ARLTS1 expression was analysed with eQTL (expression quantitative trait loci) methods. Altogether fourteen significant cis-eQTLs affecting the ARLTS1 expression level were found. In addition, epistatic interactions of ARLTS1 genomic variants with genes involved in immune system processes were predicted with the MDR program. In conclusion, this study further supports the role of ARLTS1 as a tumour suppressor gene and reveals that the expression is regulated through variants localised in regulatory regions.
Kokoelmat
- Artikkelit [6140]