Common Genetic Variants Associated with Sudden Cardiac Death : The FinSCDgen Study
Lahtinen, Annukka; Noseworthy, Peter A; Havulinna, Aki S; Jula, Antti; Karhunen, Pekka J; Kettunen, Johannes; Perola, Markus; Kontula, Kimmo; Newton-Cheh, Christopher; Salomaa, Veikko (2012)
Lahtinen, Annukka
Noseworthy, Peter A
Havulinna, Aki S
Jula, Antti
Karhunen, Pekka J
Kettunen, Johannes
Perola, Markus
Kontula, Kimmo
Newton-Cheh, Christopher
Salomaa, Veikko
2012
Plos ONE 7 7
1-7
Lääketieteen yksikkö - School of Medicine
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:uta-201210031035
https://urn.fi/URN:NBN:fi:uta-201210031035
Kuvaus
Public Library of Science open access
Tiivistelmä
Background
Sudden cardiac death (SCD) accounts for up to half of cardiac mortality. The risk of SCD is heritable but the underlying genetic variants are largely unknown. We investigated whether common genetic variants predisposing to arrhythmia or related electrocardiographic phenotypes, including QT-interval prolongation, are associated with increased risk of SCD.
Methodology/Principal Findings
We studied the association between 28 candidate SNPs and SCD in a meta-analysis of four population cohorts (FINRISK 1992, 1997, 2002 and Health 2000, n = 27,629) and two forensic autopsy series (The Helsinki Sudden Death Study and The Tampere Autopsy Study, n = 694). We also studied the association between established cardiovascular risk factors and SCD. Causes of death were reviewed using registry-based health and autopsy data. Cox regression and logistic regression models were adjusted for age, sex, and geographic region. The total number of SCDs was 716. Two novel SNPs were associated with SCD: SCN5A rs41312391 (relative risk [RR] 1.27 per minor T allele, 95% CI 1.11–1.45, P = 3.4×10−4) and rs2200733 in 4q25 (RR 1.28 per minor T allele, 95% CI 1.11–1.48, P = 7.9×10−4). We also replicated the associations for 9p21 (rs2383207, RR 1.13 per G allele, 95% CI 1.01–1.26, P = 0.036), as well as for male sex, systolic blood pressure, diabetes, cigarette smoking, low physical activity, coronary heart disease, and digoxin use (P<0.05).
Conclusions/Significance
Two novel genetic variants, one in the cardiac sodium channel gene SCN5A and another at 4q25 previously associated with atrial fibrillation, are associated with SCD.
Sudden cardiac death (SCD) accounts for up to half of cardiac mortality. The risk of SCD is heritable but the underlying genetic variants are largely unknown. We investigated whether common genetic variants predisposing to arrhythmia or related electrocardiographic phenotypes, including QT-interval prolongation, are associated with increased risk of SCD.
Methodology/Principal Findings
We studied the association between 28 candidate SNPs and SCD in a meta-analysis of four population cohorts (FINRISK 1992, 1997, 2002 and Health 2000, n = 27,629) and two forensic autopsy series (The Helsinki Sudden Death Study and The Tampere Autopsy Study, n = 694). We also studied the association between established cardiovascular risk factors and SCD. Causes of death were reviewed using registry-based health and autopsy data. Cox regression and logistic regression models were adjusted for age, sex, and geographic region. The total number of SCDs was 716. Two novel SNPs were associated with SCD: SCN5A rs41312391 (relative risk [RR] 1.27 per minor T allele, 95% CI 1.11–1.45, P = 3.4×10−4) and rs2200733 in 4q25 (RR 1.28 per minor T allele, 95% CI 1.11–1.48, P = 7.9×10−4). We also replicated the associations for 9p21 (rs2383207, RR 1.13 per G allele, 95% CI 1.01–1.26, P = 0.036), as well as for male sex, systolic blood pressure, diabetes, cigarette smoking, low physical activity, coronary heart disease, and digoxin use (P<0.05).
Conclusions/Significance
Two novel genetic variants, one in the cardiac sodium channel gene SCN5A and another at 4q25 previously associated with atrial fibrillation, are associated with SCD.
Kokoelmat
- Artikkelit [6140]