A Genome-Wide Association Study Identifies UGT1A1 as a Regulator of Serum Cell-Free DNA in Young Adults: The Cardiovascular Risk in Young Finns Study
Jylhävä, Juulia; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Hutri-Kähönen, Nina; Kettunen, Johannes; Viikari, Jorma; Raitakari, Olli T; Lehtimäki, Terho; Hurme, Mikko (2012)
Jylhävä, Juulia
Lyytikäinen, Leo-Pekka
Kähönen, Mika
Hutri-Kähönen, Nina
Kettunen, Johannes
Viikari, Jorma
Raitakari, Olli T
Lehtimäki, Terho
Hurme, Mikko
2012
Plos One 7 4
1-7
Lääketieteen yksikkö - School of Medicine
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:uta-3-982
https://urn.fi/urn:nbn:uta-3-982
Kuvaus
Public Library of science open access
Tiivistelmä
Introduction
Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear.
Methods
To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA) in a cohort of young adults (aged 24–39 years; n = 1841; 1018 women and 823 men) participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iTTM high sensitivity DNA assay was used to measure cf-DNA directly from serum.
Results
The results revealed that 110 single nucleotide polymorphisms (SNPs) were associated with serum cf-DNA with genome-wide significance (p<5×10−8). All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1) family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1) gene region.
Conclusion
The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA
Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear.
Methods
To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA) in a cohort of young adults (aged 24–39 years; n = 1841; 1018 women and 823 men) participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iTTM high sensitivity DNA assay was used to measure cf-DNA directly from serum.
Results
The results revealed that 110 single nucleotide polymorphisms (SNPs) were associated with serum cf-DNA with genome-wide significance (p<5×10−8). All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1) family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1) gene region.
Conclusion
The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA
Kokoelmat
- Artikkelit [6140]