Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Activity Detection for Massive Random Access Using Covariance-Based Matching Pursuit

Marata, Leatile; Ollila, Esa; Alves, Hirley (2025-05-28)

 
Avaa tiedosto
Activity_Detection_for_Massive_Random_Access_Using_Covariance-Based_Matching_Pursuit.pdf (792.5Kt)
Lataukset: 



Marata, Leatile
Ollila, Esa
Alves, Hirley
28.05.2025

IEEE Transactions on Vehicular Technology
doi:10.1109/TVT.2025.3574551
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202510149893

Kuvaus

Peer reviewed
Tiivistelmä
The Internet of Things paradigm heavily relies on a network of a massive number of machine -type devices (MTDs) that monitor various phenomena. Consequently, MTDs are randomly activated at different times whenever a change occurs. In general, fewer MTDs are simultaneously activated across the network, resembling targeted sampling in compressed sensing. Therefore, signal recovery in machine -type communications is addressed through joint user activity detection and channel estimation algorithms built using compressed sensing theory. However, most of these algorithms follow a two-stage procedure in which a channel is first estimated and later mapped to find active users. This approach is inefficient because the estimated channel information is subsequently discarded. To overcome this limitation, we introduce a novel covariance-learning matching pursuit (CL-MP) algorithm that bypasses explicit channel estimation. Instead, it focuses on estimating the indices of the active users greedily. Simulation results presented in terms of probability of misdetection, exact recovery rate, computational complexity and runtimes validate the proposed technique's superior performance and efficiency.
Kokoelmat
  • TUNICRIS-julkaisut [22206]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste