Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and simulation of a pendulum based 3D printed electromagnetic energy harvester

Machuca Palomino, Christian (2025)

 
Avaa tiedosto
MachucaPalominoChristian.pdf (6.862Mt)
Lataukset: 



Machuca Palomino, Christian
2025

Sähkötekniikan DI-ohjelma - Master's Programme in Electrical Engineering
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
Hyväksymispäivämäärä
2025-10-14
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202510119814
Tiivistelmä
The objective of this thesis is to design and evaluate a prototype electromagnetic vibration energy harvester fabricated from ferromagnetic 3D printed material, specifically iron filled PLA (commercially known as Proto Pasta). The prototype is produced using additive processes Fused Filament Fabrication (FFF) and Stereolithography (SLA) and tested for voltage generation under low frequency oscillations (1 to 2 Hz), simulating the natural motion of livestock, particularly cattle.

Experimental measurements are compared with simplified 3D models developed in SolidWorks and analyzed using COMSOL Multiphysics®. The simulations are used to predict voltage output and guide performance optimization. The results demonstrate good agreement between experiments and simulations, validating the feasibility of modelling voltage generation in 3D printed ferromagnetic structures with reasonable accuracy.

To verify the simulation methodology, five design concepts are studied. The baseline reference is the Kinetron MSG32 micro generator, a commercial claw type energy harvester. Due to limited public data, reasonable assumptions were made regarding its internal geometry and material properties. Alternative concepts employ radially magnetized neodymium magnets arranged in multipole configurations, including cylindrical geometries of varying diameters and a design with discrete disc magnets mounted radially on an SLA printed frame.

This comparative study underscores the practical challenges of sourcing monolithic multipole radial magnets, which are expensive and rarely available in desired configurations. It highlights instead a cost effective, accessible approach to prototyping custom energy harvesters by combining additive manufacturing with commercially available magnetic components. The findings provide a promising pathway toward applications in remote monitoring, livestock integrated systems, and low power IoT devices.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [41202]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste