Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Targeted Learning for Optimal Patient Assignment to Psychotherapy

Malkki, Veera K.; Saarni, Suoma E.; Lutz, Wolfgang; Rosenstöm, Tom H. (2025-06-22)

 
Avaa tiedosto
Targeted_Learning_for_Optimal_Patient_Assignment_to_Psychotherapy-1.pdf (609.5Kt)
Lataukset: 



Malkki, Veera K.
Saarni, Suoma E.
Lutz, Wolfgang
Rosenstöm, Tom H.
22.06.2025

PSYCHOTHERAPY RESEARCH
doi:10.1080/10503307.2025.2517567
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202509109131

Kuvaus

Peer reviewed
Tiivistelmä
Objective: Previous studies often fell short in identifying differences in treatment effects between psychotherapeutic frameworks. Instead of focusing on the overall treatment effects, we aimed to identify the effects of individually optimal treatment choice [cf. treatment personalization]. Method: We used a causal-inference machine learning (i.e., targeted learning) framework to estimate effects from observational data obtained from the Finnish Psychotherapy Quality Registry, which includes adult patients diagnosed with various mental disorders (n = 2255). Our objective was to estimate the difference in average treatment outcomes between the optimal individualized treatment and a randomly allocated treatment (i.e., the average of all treatment options). Outcomes were changes in self-assessed symptom scores and clinician-assessed functioning. In addition, we estimated counterfactual total-population outcomes for psychodynamic, solution-focused, cognitive–behavioral, and integrative or cognitive-analytic therapies. Results: Compared to the average treatment effects, the counterfactual optimal treatment produced 0.28–0.29 standard deviations larger benefits for all the outcomes (confidence intervals between 0.20–0.39). Assuming all patients underwent psychotherapy within a single framework, treatment effects on symptom scores were similar across frameworks, but some differences emerged for change in therapist-assessed functioning. Conclusion: Identifying optimal treatment rules for psychotherapy frameworks is feasible and may significantly improve outcomes.
Kokoelmat
  • TUNICRIS-julkaisut [22206]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste