Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating Multi-Dimensional Cumulated Utility in Information Retrieval

De Faveri, Francesco Luigi; Faggioli, Guglielmo; Ferro, Nicola; Järvelin, Kalervo (2025-07-13)

 
Avaa tiedosto
Sigir_2025.pdf (1002.Kt)
Lataukset: 



De Faveri, Francesco Luigi
Faggioli, Guglielmo
Ferro, Nicola
Järvelin, Kalervo
13.07.2025

doi:10.1145/3726302.3730191
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202508268461

Kuvaus

Peer reviewed
Tiivistelmä
Traditional Information Retrieval (IR) effectiveness metrics assume that a relevant document satisfies the information need as a whole. Nevertheless, if the information need is faceted or contains subtopics, this notion of relevance cannot model documents relevant only to one or a few subtopics. Furthermore, faceted documents in a ranked list may focus on the same subtopics, and their content may overlap while neglecting other subtopics. Hence, a search result, where top-ranked documents deal with different subtopics should be preferred over a result where documents are thematically limited and provide overlapping information. The Multi-Dimensional Cumulated Utility (MDCU) metric, recently formulated theoretically by Järvelin and Sormunen, extends the evaluation of novelty and diversity by considering content overlapping among documents. While Järvelin and Sormunen described the theory of MDCU and illustrated its application on a toy example, they did not investigate its empirical use. In this paper, we show the practical feasibility and validity of the MDCU by applying it to publicly available TREC test collections. Furthermore, we analyse its relation with the well-established α-nDCG, and finally, we provide a Python implementation of the MDCU, fostering its adoption as an evaluation framework. Our results indicate a positive correlation between α-nDCG and MDCU, suggesting that both measures correctly identify similar trends when evaluating the IR systems. Finally, compared to α-nDCG, MDCU exhibits a stronger statistical power and identifies up to 9 times more statistically significantly different pairs of systems.
Kokoelmat
  • TUNICRIS-julkaisut [22195]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste