Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural Network-Integrated Multistatic Sensing for Joint Angle Estimation in Cell-Free JCAS Systems

Ayten, Fatih; Ilter, Mehmet C.; Jain, Akshay; Lohan, Elena Simona; Valkama, Mikko (2025)

 
Avaa tiedosto
IEEE_JCAS2025_FINAL.pdf (2.593Mt)
Lataukset: 



Ayten, Fatih
Ilter, Mehmet C.
Jain, Akshay
Lohan, Elena Simona
Valkama, Mikko
2025

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/JCS64661.2025.10880641
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202503242969

Kuvaus

Peer reviewed
Tiivistelmä
Cell-free (CF) systems play a pivotal role in the evolution of next-generation wireless networks, as they improve spectral efficiency and coverage by eliminating the need for traditional cell boundaries. However, these systems encounter significant challenges, such as high computational complexity, scalability issues, and constraints on real-time decision-making. Meanwhile, the joint communication and sensing (JCAS) concept in wireless systems provides a framework that leverages communication signals not only for data transmission but also for accurate environmental sensing, thereby maximizing the utility of available resources. In this paper, we propose a neural network (NN)-based framework to estimate the joint angle-of-arrival (AoA)/angle-of-departure (AoD) resulting from available targets in a CF system after exploiting the communication waveforms generated by the access points (APs). In the simulation results, we first demonstrate that our proposed NN mechanism achieves comparable performance to the maximum likelihood estimation (MLE), and then show that the results are promising, proving the NN's ability to capture complex, non-linear relations between the angle values and channel estimations across a range of received signal qualities after testing with varying numbers of APs and targets.
Kokoelmat
  • TUNICRIS-julkaisut [22206]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste