Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Circulation-embedded Control Barrier Function for safe navigation: A solution to avoid undesired equilibria and dysfunctional circulation

Keyumarsi, Shaghayegh; Atman, Widhi; Gusrialdi, Azwirman (2025)

 
Avaa tiedosto
Circulation-embedded_Control.pdf (3.966Mt)
Lataukset: 



Keyumarsi, Shaghayegh
Atman, Widhi
Gusrialdi, Azwirman
2025

ROBOTICS AND AUTONOMOUS SYSTEMS
105132
doi:10.1016/j.robot.2025.105132
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202508218365

Kuvaus

Peer reviewed
Tiivistelmä
The Control Barrier Function (CBF) is widely adopted in safety-critical applications such as safe navigation in an unknown environment. CBF quadratic program (CBF-QP) is a conventional CBF framework that acts as a safety filter. However, CBF-QP is prone to deadlocks, especially in dynamic and multi-agent environments, although it also occurs with convex obstacles. Specifically, CBF-QP suffers from several challenges, including undesired equilibria, accompanying slowdown behavior around these points, dysfunctional circulation, and becoming trapped in the obstacle. In this paper, we propose a practical solution to address these issues. First, we introduce the foundational principles and parameters for the proposed circulation-embedded CBF algorithm, which incorporates an effective circulation linear inequality constraint into CBF-QP. Moreover, input bounds constraints are incorporated to ensure that the rectified input is readily applicable and optimal. Then, we study the feasibility, continuity, equilibrium points, and convergence of the proposed circulation-embedded CBF-QP algorithm through propositions and formal proofs. Finally, the effectiveness of the proposed algorithm is demonstrated through experiments and comparisons involving unknown nonconvex obstacles and multi-robot scenarios without communication.
Kokoelmat
  • TUNICRIS-julkaisut [22195]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste