Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-omics analysis in inclusion body myositis identifies mir-16 responsible for HLA overexpression

Wijnbergen, Daphne; Johari, Mridul; Ozisik, Ozan; ‘t Hoen, Peter A.C.; Ehrhart, Friederike; Baudot, Anaïs; Evelo, Chris T.; Udd, Bjarne; Roos, Marco; Mina, Eleni (2025-12)

 
Avaa tiedosto
s13023-024-03526-x.pdf (3.268Mt)
Lataukset: 



Wijnbergen, Daphne
Johari, Mridul
Ozisik, Ozan
‘t Hoen, Peter A.C.
Ehrhart, Friederike
Baudot, Anaïs
Evelo, Chris T.
Udd, Bjarne
Roos, Marco
Mina, Eleni
12 / 2025

Orphanet Journal of Rare Diseases
27
doi:10.1186/s13023-024-03526-x
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202506096975

Kuvaus

Peer reviewed
Tiivistelmä
Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge. We applied molecular subnetwork identification to find highly interconnected subnetworks with a high degree of change in Inclusion Body Myositis. These could be used as hypotheses for potential pathomechanisms and biomarkers that are implicated in this disease. Results: Our multi-omics analysis resulted in five subnetworks that exhibit changes in multiple omics layers. These subnetworks are related to antigen processing and presentation, chemokine-mediated signaling, immune response-signal transduction, rRNA processing, and mRNA splicing. An interesting finding is that the antigen processing and presentation subnetwork links the underexpressed miR-16-5p to overexpressed HLA genes by negative expression correlation. In addition, the rRNA processing subnetwork contains the RPS18 gene, which is not differentially expressed, but has significant variant association. The RPS18 gene could potentially play a role in the underexpression of the genes involved in 18 S ribosomal RNA processing, which it is highly connected to. Conclusions: Our analysis highlights the importance of interrogating multiple omics to enhance knowledge discovery in rare diseases. We report five subnetworks that can provide additional insights into the molecular pathogenesis of Inclusion Body Myositis. Our analytical workflow can be reused as a method to study disease mechanisms involved in other diseases when multiple omics datasets are available.
Kokoelmat
  • TUNICRIS-julkaisut [20724]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste