Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

ChatGPT-4o in Risk-of-Bias Assessments in Neonatology: A Validity Analysis

Kuitunen, Ilari; Nyrhi, Lauri; De Luca, Daniele (2025)

 
Avaa tiedosto
000544857.pdf (391.0Kt)
Lataukset: 



Kuitunen, Ilari
Nyrhi, Lauri
De Luca, Daniele
2025

NEONATOLOGY
doi:10.1159/000544857
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202505306414

Kuvaus

Peer reviewed
Tiivistelmä
Introduction: Only a few studies have addressed the potential of large language models (LLMs) in risk-of-bias assessments and the results have been varying. The aim of this study was to analyze how well ChatGPT performs in risk-ofbias assessments of neonatal studies. Methods: We searched all Cochrane neonatal intervention reviews published in 2024 and extracted all risk-of-bias assessments. Then the full reports were retrieved and uploaded alongside the guidance to perform a Cochrane original risk-of-bias analysis in ChatGPT- 4o. The concordance between the original assessment and that provided by ChatGPT-4o was evaluated by inter-class correlation coefficients and Cohen's kappa statistics (with 95%confidence intervals) for each risk-of-bias domain and for the overall assessment. Results: From 9 reviews, a total of 61 randomized studies were analyzed. A total of 427 judgments were compared. The overall κ was 0.43 (95% CI: 0.35-0.51) and the overall intraclass correlation coefficient was 0.65 (95% CI: 0.59-0.70). The Cohen's κ was assessed for each domain and the best agreement was observed in the allocation concealment (κ = 0.73, 95% CI: 0.55-0.90), whereas the poorest agreement was found in incomplete outcome data (κ = -0.03, 95% CI: -0.07-0.02). Conclusion: ChatGPT-4o failed to achieve sufficient agreement in the risk-of-bias assessments. Future studies should examine whether the performance of other LLM would be better or whether the agreement in ChatGPT-4o could be further enhanced by better prompting. Currently, the use of ChatGPT-4o in risk-ofbias assessments should not be promoted.
Kokoelmat
  • TUNICRIS-julkaisut [20739]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste