Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Obstacle Avoidance in Nav2 Using Control Barrier Function

Adoosh, Adoosh (2025)

 
Avaa tiedosto
AdooshAdoosh.pdf (4.082Mt)
Lataukset: 



Adoosh, Adoosh
2025

Automaatiotekniikan DI-ohjelma - Master's Programme in Automation Engineering
Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences
Hyväksymispäivämäärä
2025-06-04
Näytä kaikki kuvailutiedot
Tiivistelmä
Autonomous Robots, also known as Autonomous Mobile Robots (AMRs), is considered as the transformation of industries by making safe, efficient, and robust operations in unstable environment and complex ones. However, a significant challenge is ensuring AMRs can navigate safely in real-time, especially when faced with unexpected obstacles. The ROS2-based Nav2 stack provides key navigation capabilities, including localization, path planning, and control, but its limitations remain in handling dynamic obstacles and uncertain environments effectively.
This thesis dealing with studying the cooperation of Control Barrier Function (CBFs) with the Nav2 stack to enhance safety during navigation. CBFs are control techniques that ensure the robot stays within a safe set, avoiding collisions while continuing to perform tasks.
The thesis examines how CBFs can be integrated with existing Nav2 components like planners, controllers, and perception systems, improving real-time decision-making and robustness in dynamic environments. The proposed approach demonstrates significant improvements in safety and efficiency, particularly in environments with moving obstacles and unexpected changes.
This work contributes to the field by offering a formal, practical method to enhance the reliability and safety of Nav2-based systems, providing a promising solution for deploying autonomous robots in real-world, dynamic settings where safety is critical.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [41201]

Samankaltainen aineisto

Näytetään aineisto, joilla on samankaltaisia nimekkeitä, tekijöitä tai asiasanoja.

  • Enhancing Hierarchical Fault-Tolerant Cooperative Control in Wind Farms: The Application of Model Predictive Control and Control Reallocation 

    Jadidi, Saeedreza; Badihi, Hamed; Zhang, Youmin
    IEEE International Conference on Renewable Energy Research and Applications (2023)
    conference
    <p>Wind farms are gaining popularity worldwide, particularly in offshore locations, and they require reliable wind turbines to produce cost-efficient wind energy. To achieve this goal, there is a need for practical ...
  • Motivational interviewing and glycemic control in adolescents with poorly controlled Type 1 diabetes: A randomized controlled pilot trial 

    Tuomaala, Anna-Kaisa; Hero, Matti; Tuomisto, Martti T.; Lähteenmäki, Maria; Miettinen, Päivi J.; Laine, Tiina; Wehkalampi, Karoliina; Kiiveri, Sanne; Ahonen, Pekka; Ojaniemi, Marja; Kaunisto, Kari; Tossavainen, Päivi; Lapatto, Risto; Sarkola, Taisto; Pulkkinen, Mari-Anne (2021)
    article
  • Opium use reporting error in case-control studies: Neighborhood controls versus hospital visitor controls 

    Mohebbi, Elham; Rashidian, Hamideh; Tahami, Ahmad Naghibzadeh; Haghdoost, Ali Akbar; Rahimi-Movaghar, Afarin; Seyyedsalehi, Monireh Sadat; Rezaianzadeh, Abass; Marzban, Maryam; Moradi, Abdolvahab; Gholipour, Mahin; Hadji, Maryam; Kamangar, Farin; Zendehdel, Kazem (2021)
    article
    <p>Background: There are relatively scant data to determine whether hospital visitors could serve as a proper source of controls in case-control studies of illicit drug use. The aim of this study was to evaluate using ...
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste