Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Federated transfer learning for distributed drought stage prediction

Raza, Muhammad Owais; Umar, Aqsa; Rasheed, Jawad; Asuroglu, Tunc; Alsubai, Shtwai (2025-05)

 
Avaa tiedosto
s44163-025-00288-8.pdf (2.126Mt)
Lataukset: 



Raza, Muhammad Owais
Umar, Aqsa
Rasheed, Jawad
Asuroglu, Tunc
Alsubai, Shtwai
05 / 2025

Discover Artificial Intelligence
55
doi:10.1007/s44163-025-00288-8
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202506026549

Kuvaus

Peer reviewed
Tiivistelmä
Due to the uncertain nature of drought, it is one of the most menacing natural disasters. Drought modeling (Prediction, Detection, Forecasting, and Stage Prediction) is very essential for efficient policy making. But one of the key problems with drought modeling is the limited availability of centralized datasets. To address this problem, we are a novel proposing federated learning based transfer learning models for the prediction of drought stages. In this study, satellite image dataset was collected from the Tharparkar district (prone to drought) of Pakistan. We trained the dataset using traditional and federated learning approaches, comparing centralized ML models, pre-trained models, and their respective federated learning models (FL-ResNet, FL-DenseNet, FL-MobileNet). The development of these models is the novel aspect of the study specifically for the use case of drought stage prediction. Based on the final evaluation, FL-MobileNet achieved 82% precision while baseline MobileNet scored 68%. The results show the effectiveness of novelty (federated learning), that our proposed framework improves the performance of the drought stage classification task.
Kokoelmat
  • TUNICRIS-julkaisut [20517]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste