Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learned text topics improve drop-out risk prediction but not symptom prediction in online psychotherapies for depression and anxiety

Mylläri, Sanna; Saarni, Suoma Eeva; Joffe, Grigori; Ritola, Ville; Stenberg, Jan Henry; Rosenström, Tom Henrik (2025)

 
Avaa tiedosto
Machine_learned_text_topics_improve_drop-out_risk_prediction_but_not_symptom_prediction_in_online_psychotherapies_for_depression_and_anxiety.pdf (864.9Kt)
Lataukset: 



Mylläri, Sanna
Saarni, Suoma Eeva
Joffe, Grigori
Ritola, Ville
Stenberg, Jan Henry
Rosenström, Tom Henrik
2025

PSYCHOTHERAPY RESEARCH
doi:10.1080/10503307.2025.2473921
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202505276210

Kuvaus

Peer reviewed
Tiivistelmä
Objective: Internet-delivered cognitive behavior therapies (iCBT) are effective and scalable treatments for depression and anxiety. However, treatment adherence remains a major limitation that could be further understood by applying machine learning methods to during-treatment messages. We used machine learned topics to predict drop-out risk and symptom change in iCBT. Method: We applied topic modeling to naturalistic messages from 18,117 patients of nationwide iCBT programs for depression and generalized anxiety disorder (GAD). We used elastic net regression for outcome predictions and cross-validation to aid in model selection. We left 10% of the data as a held-out test set to assess predictive performance. Results: Compared to a set of reference covariates, inclusion of the topic variables resulted in significant decrease in drop-out risk prediction loss, both in between-patient and within-patient session-by-session models. Quantified as partial pseudo-R2, the increase in variance explained was 2.1–6.8 percentage units. Topics did not improve symptom change predictions compared to the reference model. Conclusions: Message contents can be associated with both between-patients and session-by-session risk of drop-out. Our topic predictors were theoretically interpretable. Analysis of iCBT messages can have practical implications in improved drop-out risk assessment to aid in the allocation of additional supportive interventions.
Kokoelmat
  • TUNICRIS-julkaisut [20689]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste