Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader-Follower Scenario

Bahari, Mohammad; Paz Anaya, Álvaro; Heydari Shahna, Mehdi; Mustalahti, Pauli; Mattila, Jouni (2025)

 
Avaa tiedosto
System-Level_Efficient_Performance.pdf (14.58Mt)
Lataukset: 



Bahari, Mohammad
Paz Anaya, Álvaro
Heydari Shahna, Mehdi
Mustalahti, Pauli
Mattila, Jouni
2025

IEEE Transactions on Automation Science and Engineering
doi:10.1109/TASE.2025.3572307
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202505276227

Kuvaus

Peer reviewed
Tiivistelmä
The global push for sustainability and energy efficiency is driving significant advancements across various industries, including the development of electrified solutions for heavy-duty mobile manipulators (HDMMs). Electromechanical linear actuators (EMLAs), powered by permanent magnet synchronous motors, present an all-electric alternative to traditional internal combustion engine (ICE)-powered hydraulic actuators, offering a promising path toward an eco-friendly future for HDMMs. However, the limited operational range of electrified HDMMs, closely tied to battery capacity, highlights the need to fully exploit the potential of EMLAs that drive the manipulators. This goal is contingent upon a deep understanding of the harmonious interplay between EMLA mechanisms and the dynamic behavior of heavy-duty manipulators. To this end, this paper introduces a bilevel multi-objective optimization framework, conceptualizing the EMLA-actuated manipulator of an electrified HDMM as a leader–follower scenario. At the leader level, the optimization algorithm maximizes EMLA efficiency by considering electrical and mechanical constraints, while the follower level optimizes the manipulator’s motion through a trajectory reference generator that adheres to manipulator limits. This optimization approach ensures that the system operates with a synergistic trade-off between the most efficient operating region of the actuation system, achieving a total efficiency of 70.3%. Furthermore, to complement this framework and ensure precise tracking of the generated optimal trajectories, a robust decomposed system control (RDSC) strategy is developed with accurate control and exponential stability. The proposed methodologies are validated on a 3-degrees-of-freedoms (DoFs) manipulator, demonstrating significant efficiency improvements while maintaining high-performance operation. Finally, experiments were conducted on an EMLA test bed under predefined optimal trajectories, simulating the dynamic load conditions of the manipulator’s lift joint and controlled with the developed RDSC. The results validate the effectiveness of the optimization framework and the control strategy.
Kokoelmat
  • TUNICRIS-julkaisut [20689]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste