Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating the Performance of Cloud Based NLP APIs for Sentiment and Emotion Detection in Sarcastic Text

Nujat, Nafisa Hossain (2025)

 
Avaa tiedosto
NujatNafisa.pdf (1.137Mt)
Lataukset: 



Nujat, Nafisa Hossain
2025

Master's Programme in Computing Sciences and Electrical Engineering
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2025-05-28
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202505246094
Tiivistelmä
Sentiment and emotion analysis has become an integral component of Natural Language Processing (NLP), widely applied across domains such as social media monitoring and customer feedback analytics. Despite significant advancements, sarcasm detection remains a persistent challenge, as sarcastic expressions often convey meanings opposite to their literal content, posing difficulties not only for human interpretation but even more so for automated systems. This thesis evaluates the capabilities of four widely used cloud-based NLP APIs—Google Cloud NLP, AWS Comprehend, IBM Watson, and Azure Text Analytics—in interpreting sentiment and emotion in sarcastic text, using the publicly available News Headlines Dataset for Sarcasm Detection. Preprocessing involved tokenizing headlines, removing noise such as punctuation, stopwords, and special characters, and formatting the data into JSON and CSV formats for API compatibility, while custom Python scripts automated the request-response workflow and collected structured output logs. Performance assessment was conducted through quantitative metrics—sentiment and emotion labeling accuracy, average response latency, and estimated cost per 15,000 samples—and qualitative factors such as ease of use, setup complexity, maintenance requirements, and analysis of common misinterpretations. The results indicate that the accuracy for all four APIs degrades significantly in the presence of sarcasm, often misinterpreting overtly positive or negative language at face value and missing the underlying ironic intent. These findings suggest that organizations working with sarcasm-heavy content—such as satirical journalism, online reviews, or political commentary—must account for these limitations and consider hybrid solutions, such as rule-based post-processing or context-aware enhancements. Ultimately, this research contributes empirical evidence to the discourse on sentiment analysis in complex linguistic environments, highlighting that while commercial NLP APIs offer scalable and user-friendly tools, they remain insufficient for nuanced text interpretation without supplementary strategies; future research could explore integrating API outputs with classifiers fine-tuned on sarcasm-specific datasets or leveraging transformer-based architectures better equipped to capture contextual subtleties.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40800]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste