Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing LDPC Decoding with Machine Learning Using Learnable Weights: A Hybrid Framework Integrating Neural Networks with Iterative Message-Passing for Enhanced Error-Correction in 5G Systems

Savijoki, Niklas (2025)

 
Avaa tiedosto
SavijokiNiklas.pdf (1.093Mt)
Lataukset: 



Savijoki, Niklas
2025

Tietotekniikan DI-ohjelma - Master's Programme in Information Technology
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2025-05-17
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202505135404
Tiivistelmä
This thesis investigates the optimization of Low-Density Parity-Check (LDPC) decoding through machine learning techniques, with a specific focus on 5G communication systems. Traditional LDPC decoding algorithms face a critical trade-off: Belief Propagation (BP) offers excellent error-correction performance but with high computational complexity, while Min-Sum (MS) reduces complexity at the cost of degraded performance. To address this limitation, a hybrid neural network architecture is proposed that incorporates learnable normalization and offset weights into the message-passing framework of LDPC decoders.

This approach integrates multiplicative (normalization) and additive (offset) weights into the Tanner graph structure, allowing the decoder to adapt to specific channel conditions. A novel weighted binary cross-entropy loss function is developed that prioritizes entire block recovery by assigning different importance to information and parity bits during training. Experimental results demonstrate that ML-assisted decoder consistently outperforms conventional Min-Sum decoding, approaching the error-correction capability of Belief Propagation while maintaining comparable computational efficiency to Min-Sum.

Comprehensive evaluations across different weight configurations (scalar and vector-based) reveal that increased parametrization generally improves decoding performance. Analysis of the impact of iteration counts shows that the optimal number of decoding iterations varies between different code configurations with studied Basegraph 1 case requiring 15 iterations for optimal performance while studied Basegraph 2 case benefits significantly from 20 iterations.

The proposed ML-assisted LDPC decoder represents a significant advancement for 5G systems, offering improved error correction at lower signal strengths while balancing latency and computational requirements. This research contributes to the ongoing evolution of wireless technology by demonstrating how machine learning can effectively enhance traditional decoding algorithms, providing a practical pathway toward more efficient and adaptive error correction in modern communication systems.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40800]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste