Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Harnessing liposomal nanocellulose hydrogel for NIR-light driven on-demand drug delivery

Gangurde, Puja; Gounani, Zahra; Zini, Jacopo; Polez, Roberta Teixeira; Österberg, Monika; Lauren, Patrick; Lajunen, Tatu; Laaksonen, Timo (2025-06)

 
Avaa tiedosto
Carbohydrate_Polymer.pdf (4.676Mt)
Lataukset: 



Gangurde, Puja
Gounani, Zahra
Zini, Jacopo
Polez, Roberta Teixeira
Österberg, Monika
Lauren, Patrick
Lajunen, Tatu
Laaksonen, Timo
06 / 2025

Carbohydrate Polymer Technologies and Applications
100787
doi:10.1016/j.carpta.2025.100787
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202505085016

Kuvaus

Peer reviewed
Tiivistelmä
Stimuli-responsive nanoparticles have gained attention for their ability to control drug release via external signals. However, challenges like biodegradation and toxicity hinder their applications. This study introduces a system by integrating light-activated liposomes with cellulose nanofiber (CNF) hydrogel, creating a controlled release system where liposomes act as drug reservoirs, protecting drug molecules and preventing unwanted cargo leakage for on-demand localized drug delivery. Our surface interaction study between cationic liposomes and nanocellulose shows that the liposomes, while not uniformly distributed, are bound to the nanocellulose hydrogel due to strong electrostatic interactions and fiber networks, thus forming a depot-like drug reservoir system. We evaluated hydrogel thickness and light dose to optimize the cargo release. Upon activation with near-infrared light (808 nm, 1 W/cm2), the photosensitizer inside the bilayer of thermosensitive liposome generates heat, which makes liposome leaky, resulting in on-demand cargo release. We observed up to 50 % release at low dose (20 J/cm2) of light, which increased to 80 % after exposure to higher dose of light (80 J/cm2), highlighting the sensitivity of the system. This dual-platform combines the biocompatibility of nanocellulose with tunability of light-activated liposomes, presenting promising approach for on-demand drug delivery with significant potential for personalized medicine.
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste