Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Positive and Negative Sampling Strategies for Self-Supervised Learning on Audio-Video Data

Wang, Shanshan; Tripathy, Soumya; Heittola, Toni; Mesaros, Annamaria (2024)

 
Avaa tiedosto
Positive_and_Negative_Sampling_Strategies_for_Self-Supervised_Learning_on_Audio-Video_Data.pdf (1.521Mt)
Lataukset: 



Wang, Shanshan
Tripathy, Soumya
Heittola, Toni
Mesaros, Annamaria
2024

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/ICASSPW62465.2024.10626141
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202504153703

Kuvaus

Peer reviewed
Tiivistelmä
<p>In Self-Supervised Learning (SSL), Audio-Visual Correspondence (AVC) is a popular task to learn deep audio and video features from large unlabeled datasets. The key step in AVC is to randomly sample audio and video clips from the dataset and learn to minimize the feature distance between the positive pairs (corresponding audio-video pair) while maximizing the distance between the negative pairs (non-corresponding audio-video pairs). The learnt features are shown to be effective on various downstream tasks. However, these methods achieve subpar performance when the size of the dataset is rather small. In this paper, we investigate the effect of utilizing class label information in the AVC feature learning task. We modified various positive and negative data sampling techniques of SSL based on class label information to investigate the effect on the feature quality. We propose a new sampling approach which we call soft-positive sampling, where the positive pair for one audio sample is not from the exact corresponding video, but from a video of the same class. Experimental results suggest that when the dataset size is small in SSL setup, features learnt through the soft-positive sampling method significantly outperform those from the traditional SSL sampling approaches. This trend holds in both in-domain and out-of-domain downstream tasks, and even outperforms supervised classification. Finally, experiments show that class label information can easily be obtained using a publicly available classifier network and then can be used to boost the SSL performance without adding extra data- annotation burden.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20583]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste