Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

PRUNE: Dynamic and Decidable Dataflow for Signal Processing on Heterogeneous Platforms

Boutellier, Jani; Wu, Jiahao; Huttunen, Heikki; Bhattacharyya, Shuvra (2017)

 
Avaa tiedosto
boutellier2017prune.pdf (1.518Mt)
Lataukset: 



Boutellier, Jani
Wu, Jiahao
Huttunen, Heikki
Bhattacharyya, Shuvra
2017

IEEE Transactions on Signal Processing
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/TSP.2017.2773424
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201711232255

Kuvaus

Peer reviewed
Tiivistelmä
The majority of contemporary mobile devices and personal computers are based on heterogeneous computing platforms that consist of a number of CPU cores and one or more Graphics Processing Units (GPUs). Despite the high volume of these devices, there are few existing programming frameworks that target full and simultaneous utilization of all CPU and GPU devices of the platform.<br/><br/>This article presents a dataflow-flavored Model of Computation (MoC) that has been developed for deploying signal processing applications to heterogeneous platforms. The presented MoC is dynamic and allows describing applications with data dependent run-time behavior. On top of the MoC, formal design rules are presented that enable application descriptions to be simultaneously dynamic and decidable. Decidability guarantees compile-time application analyzability for deadlock freedom and bounded memory.<br/><br/>The presented MoC and the design rules are realized in a novel Open Source programming environment "PRUNE'' and demonstrated with representative application examples from the domains of image processing, computer vision and wireless communications. Experimental results show that the proposed approach outperforms the state-of-the-art in analyzability, flexibility and performance.
Kokoelmat
  • TUNICRIS-julkaisut [22206]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste