Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous Training vs. Transfer Learning on Edge and Fog Environments: A Steam Detection use Case

Kukkaro, Ari; Moreschini, Sergio; Hästbacka, David (2024-12-27)

 
Avaa tiedosto
Continuous-Training-vs-Transfer-Learning-on-Edge-and-Fog-Environments-A-Steam-detection-use-case.pdf (453.0Kt)
Lataukset: 



Kukkaro, Ari
Moreschini, Sergio
Hästbacka, David
27.12.2024

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/SEAA64295.2024.00029
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202504043295

Kuvaus

Peer reviewed
Tiivistelmä
The implementation of smart manufacturing, which utilises advanced digital technologies to enhance the agility and productivity of the traditional manufacturing sector, has the potential to reduce resource consumption, optimise processes and enhance safety. One challenge in process automation (PA) is its strict real-time requirements. One solution to this challenge is the use of Edge and Fog computing platforms with finite computational power, which brings processing and data storing closer to the data sources. This proximity of computing devices reduces the latency and bandwidth requirements, relaxes the need for a reliable Internet connection, and provides more security in design over the Cloud solutions. This paper compares the performance of Edge and Fog computing for soft real-time machine learning-based visual process monitoring that supports the human operator. The objective is to get a better understanding how this ML task can be relocated within Edge and Fog layers. Moreover, the article provides con-siderations of emerging difficulties of practical implementation of Continuous Training pipeline and soft real-time steam detection.
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste