Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biomimetic freestanding microfractals for flexible electronics

Barua, Amit; Gogoi, Rituporn; Reddy, Pulikanti Guruprasad; Jolaiy, Saman; Bodaghi, Mahdi; Laukkanen, Timo; Speck, Thomas; Sariola, Veikko; Sharma, Vipul (2025)

 
Avaa tiedosto
s41528-025-00381-z.pdf (11.98Mt)
Lataukset: 



Barua, Amit
Gogoi, Rituporn
Reddy, Pulikanti Guruprasad
Jolaiy, Saman
Bodaghi, Mahdi
Laukkanen, Timo
Speck, Thomas
Sariola, Veikko
Sharma, Vipul
2025

npj Flexible Electronics
10
doi:10.1038/s41528-025-00381-z
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202503283084

Kuvaus

Peer reviewed
Tiivistelmä
The microfractals of leaf skeletons can be effective substrates for flexible electronics due to their high surface-to-volume ratio, transparency, breathability and flexibility. The challenge lies in replicating these fractal surfaces at the microscale in a way that is scalable, freestanding, and integrable with various materials. In this study, we present a novel method for the biomimetic microfabrication of leaf-skeleton-based fractal surfaces. We utilized a modified electrospinning method, replacing the fiber collector with a metalized biotic collector to replicate the microstructures. The biomimetic microfractals demonstrated ~90% replication accuracy, >80% transparency, good stretchability, and breathability, and were freestanding. The method is versatile, allowing for the use of a wide range of polymers in biomimetic microfabrication. For application in flexible electronics, biomimetic conductive fractal patterns (BCFP) were fabricated by immobilizing Ag Nanowires (AgNW) using a simple spray-based method. The BCFP exhibited high conductivity with sheet resistances <20 Ω sq–1 while maintaining good transparencies. The BCFP adheres conformally to human skin, acting as an electronic skin (e-skin). To demonstrate the application, the BCFP was used to fabricate a tactile pressure sensor. In addition to their excellent transparency at low sheet resistances, stretchability, moisture resistance, and tight conformal bonding with the target surface, the BCFP also allows the evaporation of perspiration, making them suitable for long-term use as epidermal sensors. The application of BCFP in advanced bionic skin was demonstrated through gesture monitoring experiments.
Kokoelmat
  • TUNICRIS-julkaisut [22206]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste