Challenge of missing data in observational studies: investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritis
Georgiadis, Stylianos; Pons, Marion; Rasmussen, Simon; Hetland, Merete Lund; Linde, Louise; di Giuseppe, Daniela; Michelsen, Brigitte; Wallman, Johan K.; Olofsson, Tor; Zavada, Jakub; Glintborg, Bente; Loft, Anne G.; Codreanu, Catalin; Melim, Daniel; Almeida, Diogo; Provan, Sella Aarrestad; Kvien, Tore K.; Rantalaiho, Vappu; Peltomaa, Ritva; Gudbjornsson, Bjorn; Palsson, Olafur; Rotariu, Ovidiu; MacDonald, Ross; Rotar, Ziga; Pirkmajer, Katja Perdan; Lass, Karin; Iannone, Florenzo; Ciurea, Adrian; Østergaard, Mikkel; Ørnbjerg, L. M. (2025-02-20)
Georgiadis, Stylianos
Pons, Marion
Rasmussen, Simon
Hetland, Merete Lund
Linde, Louise
di Giuseppe, Daniela
Michelsen, Brigitte
Wallman, Johan K.
Olofsson, Tor
Zavada, Jakub
Glintborg, Bente
Loft, Anne G.
Codreanu, Catalin
Melim, Daniel
Almeida, Diogo
Provan, Sella Aarrestad
Kvien, Tore K.
Rantalaiho, Vappu
Peltomaa, Ritva
Gudbjornsson, Bjorn
Palsson, Olafur
Rotariu, Ovidiu
MacDonald, Ross
Rotar, Ziga
Pirkmajer, Katja Perdan
Lass, Karin
Iannone, Florenzo
Ciurea, Adrian
Østergaard, Mikkel
Ørnbjerg, L. M.
20.02.2025
Rmd Open
e004844
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202503273055
https://urn.fi/URN:NBN:fi:tuni-202503273055
Kuvaus
Peer reviewed
Tiivistelmä
<p>Objectives We aimed to compare various methods for imputing disease activity in longitudinally collected observational data of patients with axial spondyloarthritis (axSpA). Methods We conducted a simulation study on data from 8583 axSpA patients from ten European registries. Disease activity was assessed by the Axial Spondyloarthritis Disease Activity Score (ASDAS) and the corresponding low disease activity (LDA; ASDAS<2.1) state at baseline, 6 and 12 months. We focused on cross-sectional methods which impute missing values of an individual at a particular time point based on the available information from other individuals at that time point. We applied nine single and five multiple imputation methods, covering mean, regression and hot deck methods. The performance of each imputation method was evaluated via relative bias and coverage of 95% confidence intervals for the mean ASDAS and the derived proportion of patients in LDA. Results Hot deck imputation methods outperformed mean and regression methods, particularly when assessing LDA. Multiple imputation procedures provided better coverage than the corresponding single imputation ones. However, none of the evaluated methods produced unbiased estimates with adequate coverage across all time points, with performance for missing baseline data being worse than for missing follow-up data. Predictive mean and weighted predictive mean hot deck imputation procedures consistently provided results with low bias Conclusions This study contributes to the available methods for imputing disease activity in observational research. Hot deck imputation using predictive mean matching exhibited the highest robustness and is thus our suggested approach.</p>
Kokoelmat
- TUNICRIS-julkaisut [20188]