Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An auto hierarchical clustering algorithm to distinguish geometries suitable for additive and traditional manufacturing technologies: Comparing humans and unsupervised learning

Ördek, Baris; Coatanea, Eric; Borgianni, Yuri (2025-03)

 
Avaa tiedosto
1-s2.0-S2590123025004980-main.pdf (6.551Mt)
Lataukset: 



Ördek, Baris
Coatanea, Eric
Borgianni, Yuri
03 / 2025

Results in Engineering
104418
doi:10.1016/j.rineng.2025.104418
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202503132763

Kuvaus

Peer reviewed
Tiivistelmä
The development of additive manufacturing has made these technologies suitable for fabricating end products. This encourages companies to identify quickly parts in large databases for which switching from traditional manufacturing technologies to additive manufacturing is convenient. Typically, the manufacturing process selection is made by experts who weigh various parameters, but evidence suggests that intelligent systems could beneficially replace or aid this manual selection. One challenge in using manufacturing data for advanced analysis and machine learning is that it is usually unlabeled, and manual data labelling is expensive and time-consuming. This paper deals with the application of an enhanced unsupervised learning algorithm that automatically identifies parts suitable for additive manufacturing based on parts geometry as a preliminary step of process selection. One hundred randomly selected parts were evaluated by manufacturing experts through a survey and then clustered by the proposed algorithm. The comparison of the manual and algorithmic classifications, using unsupervised learning, regarding suitability for additive or traditional manufacturing is the main original contribution of this study. Overall, 78% convergence between most experts’ designations and the unsupervised learning algorithm is achieved. For those parts where expert opinions are substantially aligned, the algorithm showed a 90% convergence rate with human choices. These outcomes support the introduction of an intelligent system to perform a preliminary identification of suitable manufacturing processes based on part geometry, as it can be seen beneficial if compared with the time and cost spent when involving a pool of experts.
Kokoelmat
  • TUNICRIS-julkaisut [22191]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste