TAU-Indoors Dataset for Visual and LiDAR Place Recognition
Dag, Atakan; Alijani, Farid; Peltomäki, Jukka; Suomela, Lauri; Rahtu, Esa; Edelman, Harry; Kämäräinen, Joni Kristian (2023)
Avaa tiedosto
Lataukset:
Dag, Atakan
Alijani, Farid
Peltomäki, Jukka
Suomela, Lauri
Rahtu, Esa
Edelman, Harry
Kämäräinen, Joni Kristian
2023
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202503132743
https://urn.fi/URN:NBN:fi:tuni-202503132743
Kuvaus
Peer reviewed
Tiivistelmä
<p>There is a growing number of autonomous driving datasets that can be used to benchmark vision and LiDAR based place recognition and localization methods. The same sensor modalities, vision and depth, are important for indoor localization and navigation as well, but there is a lack of large indoor datasets. This work presents a realistic indoor dataset for long-term evaluation of place recognition and localization methods. The dataset contains RGB and LiDAR sequences captured inside campus buildings over a time period of nine months and in various illumination and occupancy conditions. The dataset contains three typical indoor spaces: office, basement and foyer. We describe collection of the dataset and in the experimental part we report results for the two state-of-the-art deep learning place recognition methods. The data will be available through https://github.com/lasuomela/TAU-Indoors.</p>
Kokoelmat
- TUNICRIS-julkaisut [20711]