Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Integrated System for Stroke Rehabilitation Exercise Assessment Using KINECT v2 and Machine Learning

Islam, Minhajul; Sultana, Mairan; Ahmed, Eshtiak; Islam, Ashraful; Rahman, A. K.M.Mahbubur; Ali, Amin Ahsan; Amin, M. Ashraful (2024)

 
Avaa tiedosto
KinectV2.pdf (311.1Kt)
KinectV2.pdf (311.1Kt)
Lataukset: 



Islam, Minhajul
Sultana, Mairan
Ahmed, Eshtiak
Islam, Ashraful
Rahman, A. K.M.Mahbubur
Ali, Amin Ahsan
Amin, M. Ashraful
2024

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/978-3-031-53827-8_20
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202404305041

Kuvaus

Peer reviewed
Tiivistelmä
<p>Stroke-induced physical disabilities necessitate consistent and effective rehabilitation exercises. While a typical regime encompasses 20–60 min daily, ensuring adherence and effectiveness remains a challenge due to lengthy recovery periods, potential demotivation, and the need for professional supervision. This paper presents an innovative home-based rehabilitation system designed to address these challenges by leveraging the capabilities of the KINECT v2 3D camera. Our system, equipped with a graphical user interface (GUI), allows patients to perform, monitor, and record their exercises. By utilizing advanced machine learning algorithms, specifically G3D and disentangled multi-scale aggregation schemes, the system can analyze exercises, generating both primary objective (PO) and control factor (CF) scores out of 100. This scoring assesses the exercise quality, providing actionable feedback for improvement. Our model is trained on the Kinematic Assessment of Movement and Clinical Scores for Remote Monitoring of Physical Rehabilitation (KIMORE) dataset, ensuring robust real-time scoring. Beyond scoring, the system offers pose-correction recommendations, ensuring exercises align with expert guidelines. It can evaluate the efficacy of five distinct exercises, with provision for including more based on individual needs and expert recommendations. Overall, our system offers a streamlined approach to stroke rehabilitation, promising enhanced feasibility, and patient engagement, potentially revolutionizing stroke recovery in the healthcare domain.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20153]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste