Complex-domain SVD- and sparsity-based denoising for optical diffraction tomography
Shevkunov, Igor; Ziemczonok, Michal; Kujawinska, Malgorazata; Egiazarian, Karen (2022-12)
Shevkunov, Igor
Ziemczonok, Michal
Kujawinska, Malgorazata
Egiazarian, Karen
12 / 2022
Optics and Lasers in Engineering
107228
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202208266745
https://urn.fi/URN:NBN:fi:tuni-202208266745
Kuvaus
Peer reviewed
Tiivistelmä
In this paper, we adopt a complex-domain cube filter (CCF) developed for hyperspectral 3D complex domain images for noise suppression of 3D complex-valued data in optical diffraction tomography. CCF is based on two processing steps: singular value decomposition (SVD) and complex-domain sparsity-based filter (CDID). SVD provides data compression and CDID noise suppression in the compressed domain. We demonstrate that the CCF algorithm can be used to denoise captured projections (sinogram), which results in enhanced tomographic <br/>reconstruction. The accuracy and quantitative advantage of CCF application are shown in simulation tests and in the processing of the experimental data. We show that the algorithm effectively suppresses noise and retrieves objects’ details even for highly noisy data.
Kokoelmat
- TUNICRIS-julkaisut [20247]