Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing throughput and convergence time in dynamic multi-connectivity 5G deployments

Pirmagomedov, Rustam; Moltchanov, Dmitri; Samuylov, Andrey; Orsino, Antonino; Torsner, Johan; Andreev, Sergey; Koucheryavy, Yevgeni (2022-04-01)

 
Avaa tiedosto
Characterizing_throughput_and_convergence.pdf (1.936Mt)
Lataukset: 



Pirmagomedov, Rustam
Moltchanov, Dmitri
Samuylov, Andrey
Orsino, Antonino
Torsner, Johan
Andreev, Sergey
Koucheryavy, Yevgeni
01.04.2022

Computer Communications
doi:10.1016/j.comcom.2022.01.015
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202203292830

Kuvaus

Peer reviewed
Tiivistelmä
<p>Fifth-generation (5G) mobile communications are expected to integrate multiple radio access technologies (RATs) within a unified access network by allowing the user equipment (UE) to utilize them concurrently. As a consequence, mobile users face even more heterogeneous connectivity options, which creates challenges for efficient decision-making when selecting a network dynamically. In this work, with the tools of queuing theory, integral geometry, and optimization theory, we develop a novel mobility-centric analytical methodology for multi-RAT deployments. Particularly, we first contribute a framework for optimal data rate allocation in the network-assisted regime. Then, we characterize the convergence time of the distributed optimization algorithms based on reinforcement learning to reduce the signaling overheads. Our findings suggest that network-assisted strategies may improve the UE throughput by up to 60% depending on the considered deployment, where the gains increase with a higher density of millimeter-wave New Radio (NR) base stations. A user-centric solution based on reinforcement learning mechanisms is capable of approaching the performance of the network-assisted scheme. However, the associated convergence time may be prohibitive, on the order of several minutes. To improve the latter, we further propose and evaluate a transfer learning-based algorithm that allows to decrease the convergence time by up to 10 times, thus becoming a simple solution for rate-optimized operation in future 5G NR deployments.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste