Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semiautomated classification of nocturnal seizures using video recordings

Peltola, Jukka; Basnyat, Pabitra; Armand Larsen, Sidsel; Østerkjærhuus, Tim; Vinding Merinder, Torsten; Terney, Daniella; Beniczky, Sándor (2022)

 
Avaa tiedosto
Epilepsia_2022_Peltola_Semiautomated_classification_of_nocturnal_seizures_using_video_recordings.pdf (714.9Kt)
Lataukset: 



Peltola, Jukka
Basnyat, Pabitra
Armand Larsen, Sidsel
Østerkjærhuus, Tim
Vinding Merinder, Torsten
Terney, Daniella
Beniczky, Sándor
2022

Epilepsia
doi:10.1111/epi.17207
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202206275827

Kuvaus

Peer reviewed
Tiivistelmä
<p>Objective: The objective of this study was to evaluate the accuracy of a semiautomated classification of nocturnal seizures using a hybrid system consisting of an artificial intelligence-based algorithm, which selects epochs with potential clinical relevance to be reviewed by human experts. Methods: Consecutive patients with nocturnal motor seizures admitted for video-electroencephalographic long-term monitoring (LTM) were prospectively recruited. We determined the extent of data reduction by using the algorithm, and we evaluated the accuracy of seizure classification from the hybrid system compared with the gold standard of LTM. Results: Forty consecutive patients (24 male; median age = 15 years) were analyzed. The algorithm reduced the duration of epochs to be reviewed to 14% of the total recording time (1874 h). There was a fair agreement beyond chance in seizure classification between the hybrid system and the gold standard (agreement coefficient =.33, 95% confidence interval =.20–.47). The hybrid system correctly identified all tonic–clonic and clonic seizures and 82% of focal motor seizures. However, there was low accuracy in identifying seizure types with more discrete or subtle motor phenomena. Significance: Using a hybrid (algorithm–human) system for reviewing nocturnal video recordings significantly decreased the workload and provided accurate classification of major motor seizures (tonic–clonic, clonic, and focal motor seizures).</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste