Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Failure Detection and Isolation by LSTM Autoencoder

Toikka, Tauno; Laitinen, Jouko; Koskinen, Kari T. (2022)

 
Avaa tiedosto
toikka_LSTM_paperi_rinnakkaisen.pdf (659.3Kt)
Lataukset: 



Toikka, Tauno
Laitinen, Jouko
Koskinen, Kari T.
2022

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/978-3-030-96794-9_36
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202208296762

Kuvaus

Peer reviewed
Tiivistelmä
<p>Failure diagnosis on some system is often preferred even the data of the system is not designed for the condition monitoring and does not contain any or contains little example cases of failures. For this kind of system, it is unrealistic to directly observe condition from single feature or neither to build a machine learning system that has been trained to detect known failures. Still if any data describing the system exists, it is possible to provide some level of diagnosis on the system. Here we present an LSTM (Long Short Term Memory) autoencoder approach for detecting and isolating system failures with insufficient data conditions. Here we also illustrate how the failure isolation capability is effected by the choice of input feature space. The approach is tested with the flight data of F-18 aircraft and the applicability is validated against several leading edge flap (LEF) control surface seizure failures. The method shows a potential for not only detecting a potential failure in advance but also to isolate the failure by allocating the anomaly on the data to the features that are related to the operation of LEFs. The approach presented here provides diagnostic value from the data than is not designed for condition monitoring neither contain any example case failures.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20189]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste