Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning reveals strain-rate-dependent predictability of discrete dislocation plasticity

Mińkowski, Marcin; Kurunczi-Papp, David; Laurson, Lasse (2022-02)

 
Avaa tiedosto
PhysRevMaterials.6.023602.pdf (4.217Mt)
Lataukset: 



Mińkowski, Marcin
Kurunczi-Papp, David
Laurson, Lasse
02 / 2022

Physical Review Materials
023602
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1103/PhysRevMaterials.6.023602
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202212099026

Kuvaus

Peer reviewed
Tiivistelmä
<p>Predicting the behavior of complex systems is one of the main goals of science. An important example is plastic deformation of micron-scale crystals, a process mediated by collective dynamics of dislocations, manifested as broadly distributed strain bursts and significant sample-to-sample variations in the response to applied loading. Here, by combining large-scale discrete dislocation dynamics simulations and machine learning, we study the problem of predicting the fluctuating stress-strain curves of individual small single crystals subject to strain-controlled loading using features of the initial dislocation configurations as input. Our results reveal an intriguing rate dependence of deformation predictability: For small strains predictability improves with increasing strain rate, while for larger strains the predictability vs strain rate relation becomes nonmonotonic. We show that for small strains the rate dependence of deformation predictability can be captured by considering the fraction of dislocations moving against the direction imposed by the external stress, serving as a measure of strain-rate-dependent complexity of the dislocation dynamics. The nonmonotonic predictability vs strain rate relation for large strains is argued to be related to a transition from fluctuating to smooth plastic flow when strain rate is increased.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20143]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste