Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning analysis of instabilities in noise-like pulse lasers

Mabed, Mehdi; Meng, Fanchao; Salmela, Lauri; Finot, Christophe; Genty, Goëry; Dudley, John M. (2022-04-25)

 
Avaa tiedosto
oe_30_9_15060.pdf (4.612Mt)
Lataukset: 



Mabed, Mehdi
Meng, Fanchao
Salmela, Lauri
Finot, Christophe
Genty, Goëry
Dudley, John M.
25.04.2022

Optics Express
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1364/OE.455945
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202205235170

Kuvaus

Peer reviewed
Tiivistelmä
<p>Neural networks have been recently shown to be highly effective in predicting time-domain properties of optical fiber instabilities based only on analyzing spectral intensity profiles. Specifically, from only spectral intensity data, a suitably trained neural network can predict temporal soliton characteristics in supercontinuum generation, as well as the presence of temporal peaks in modulation instability satisfying rogue wave criteria. Here, we extend these previous studies of machine learning prediction for single-pass fiber propagation instabilities to the more complex case of noise-like pulse dynamics in a dissipative soliton laser. Using numerical simulations of highly chaotic behaviour in a noise-like pulse laser operating around 1550 nm, we generate large ensembles of spectral and temporal data for different regimes of operation, from relatively narrowband laser spectra of 70 nm bandwidth at the -20 dB level, to broadband supercontinuum spectra spanning 200 nm at the -20 dB level and with dispersive wave and long wavelength Raman extension spanning from 1150–1700 nm. Using supervised learning techniques, a trained neural network is shown to be able to accurately correlate spectral intensity profiles with time-domain intensity peaks and to reproduce the associated temporal intensity probability distributions.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste