Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal behavior and power scaling potential of membrane external-cavity surface-emitting lasers (MECSELs)

Phung, Hoy My; Tatar-Mathes, Philipp; Rogers, Aaron; Rajala, Patrik; Ranta, Sanna; Kahle, Hermann; Guina, Mircea (2022-04-28)

 
Avaa tiedosto
Thermal_Behavior_and_Power_Scaling_Potential_of_Membrane_External_Cavity_Surface_Emitting_Lasers_MECSELs.pdf (2.895Mt)
Lataukset: 



Phung, Hoy My
Tatar-Mathes, Philipp
Rogers, Aaron
Rajala, Patrik
Ranta, Sanna
Kahle, Hermann
Guina, Mircea
28.04.2022

IEEE journal of quantum electronics
doi:10.1109/JQE.2022.3147482
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202204203305

Kuvaus

Peer reviewed
Tiivistelmä
<p>Membrane external-cavity surface-emitting lasers (MECSELs) have great potential of power scaling owing to the possibility of double-side cooling and a thinner active structure. Here, we systematically investigate the limits of heat transfer capabilities with various heat spreader and pumping parameters. The thermal simulations employ the finite-element method and are validated with experimental results. The simulations reveal that double-side cooling lowers the temperature by about a factor of two compared to single-side cooling when diamond and silicon carbide (SiC) heat spreaders are used. In comparison, the benefit for a thermally worse conductive heat spreader is larger, i.e. a fourfold decrease for sapphire. Furthermore, we investigate the limits of power scaling imposed by the intrinsic lateral heat flow of the heat spreaders that sets how much the pump beam diameter can be enlarged while having efficient cooling. To this end, the simulations for sapphire reveal a limit for the pump beam diameter within the hundred micrometer range, while for SiC and diamond the limit is more than double. Moreover, pumping with a super-Gaussian beam profile could further reduce the temperature rise near the center of the pump area compared with a Gaussian beam. Finally, we investigate the benefits of double-side pumping of thick membrane gain structures, revealing a more homogeneous axial temperature distribution than for single-side pumping. This can be crucial for gain membranes with thicknesses larger than &#x007E; 1&#x03BC;m to fully exploit the power-scaling ability of MECSEL technology.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20143]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste