Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogen Bonding Drives the Self-Assembling of Carbazole-based Hole-Transport Material for Enhanced Efficiency and Stability of Perovskite Solar Cells

Wang, Cheng; Liu, Maning; Rahman, Sunardi; Pasanen, Hannu; Tian, Jingshu; Li, Jianhui; Deng, Zhifeng; Zhang, Haichang; Vivo, Paola (2022)

 
Avaa tiedosto
1_s2.0_S2211285522006826_main.pdf (3.714Mt)
Lataukset: 



Wang, Cheng
Liu, Maning
Rahman, Sunardi
Pasanen, Hannu
Tian, Jingshu
Li, Jianhui
Deng, Zhifeng
Zhang, Haichang
Vivo, Paola
2022

NANO ENERGY
107604
doi:10.1016/j.nanoen.2022.107604
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202208026153

Kuvaus

Peer reviewed
Tiivistelmä
Designing a hole-transport material (HTM) that guarantees effective hole transport while self-assembling at the perovskite|HTM interface with the formation of an ordered interlayer, has recently emerged as a promising strategy for high-performance and stable perovskite solar cells (PSCs). Hydrogen bonding (HB) is a versatile multi-functional tool for the design of small molecular HTMs. However, to date, its employment is mostly limited to p-i-n inverted PSCs. This study demonstrates the advantages of a novel HTM design that can self-assemble into a long-range ordered interlayer on the perovskite surface via HB association. A hydro-functional HTM (O1) is compared to a reference HTM (O2) that cannot form HB due to the replacement of the amide group of O1 with a plain butyl alkyl chain in O2. As a result, O1-based n-i-p PSCs display enhanced hole extraction reaction, suppressed interfacial charge recombination, reduced hysteresis effect, and an increase in Voc (by 60 mV), FF (>11% increase), and overall power conversion efficiency, PCE (32% increase) compared to the case of HB-free O2-based devices. Remarkable stability is observed for unencapsulated O1 cells, with a T80 lifetime of 35.5 h under continuous maximum power point tracking in air. This work emphasizes the role of HB-directed self-assembling in simultaneously enhancing both the PCE and stability of popular n-i-p PSCs. This study paves the way for the development of new hydro-functional charge-transport material designs for efficient and stable PSCs.
Kokoelmat
  • TUNICRIS-julkaisut [20689]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste