Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

The use of wrist EMG increases the PPG Heart Rate accuracy in smartwatches

Friman, Severi; Vehkaoja, Antti; Perez-Macias, Jose Maria (2022)

 
Avaa tiedosto
The_use_of_wrist_EMG_increses_the_PPG_heart_rate_accuracy_in_smartwatches_post_print_1.pdf (778.7Kt)
Lataukset: 



Friman, Severi
Vehkaoja, Antti
Perez-Macias, Jose Maria
2022

IEEE Sensors Journal
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/JSEN.2022.3219297
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202301051140

Kuvaus

Peer reviewed
Tiivistelmä
<p>The impact of tissue movements on the accuracy of heart rate (HR) estimates is a challenge in today&#x2019;s wearable technology. Tissue movements are caused by muscle activity that modifies the optical path of the reflectance photoplethysmography (PPG), leading to motion artifacts (MA) that mask the true HR. This kind of MA is not always detected using accelerometers (ACC). In this study, we propose a method to increase the PPG HR accuracy of a wristwatch using wrist surface electromyogram (EMG) and ACC using spectrum subtraction algorithms. We collected the wrist EMG, wristwatch PPG, ACC data, and the ECG from nine subjects. Data were recorded during four frequent hand movements and three activities (weightlifting and running/walking with and without holding a racket). The added value of the EMG was studied. Visual results indicate that wrist EMG correlates well with the MA seen in the PPG signal and provides additional information over the typically used ACC data. Our analysis showed that the proposed artifact removal method using EMG and ACC decreases the HR estimation error on average by 49% compared to only ACC. Our results showed that wrist EMG contains complementary information on the PPG artifacts and offers a novel signal modality for improving optical HR estimation accuracy in smartwatches.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20263]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste