Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions

Paoli, John; Pölönen, Ilkka; Salmivuori, Mari; Räsänen, Janne; Zaar, Oscar; Polesie, Sam; Koskenmies, Sari; Pitkänen, Sari; Övermark, Meri; Isoherranen, Kirsi; Juteau, Susanna; Ranki, Annamari; Grönroos, Mari; Neittaanmäki, Noora (2022-11-14)

 
Avaa tiedosto
2045.pdf (2.150Mt)
Lataukset: 



Paoli, John
Pölönen, Ilkka
Salmivuori, Mari
Räsänen, Janne
Zaar, Oscar
Polesie, Sam
Koskenmies, Sari
Pitkänen, Sari
Övermark, Meri
Isoherranen, Kirsi
Juteau, Susanna
Ranki, Annamari
Grönroos, Mari
Neittaanmäki, Noora
14.11.2022

Acta dermato-venereologica
adv00815
doi:10.2340/actadv.v102.2045
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202212028821

Kuvaus

Peer reviewed
Tiivistelmä
<p>Malignant melanoma poses a clinical diagnostic problem, since a large number of benign lesions are excised to find a single melanoma. This study assessed the accuracy of a novel non-invasive diagnostic technology, hyperspectral imaging, for melanoma detection. Lesions were imaged prior to excision and histopathological analysis. A deep neural network algorithm was trained twice to distinguish between histopathologically verified malignant and benign melanocytic lesions and to classify the separate subgroups. Furthermore, 2 different approaches were used: a majority vote classification and a pixel-wise classification. The study included 325 lesions from 285 patients. Of these, 74 were invasive melanoma, 88 melanoma in situ, 115 dysplastic naevi, and 48 non-dysplastic naevi. The study included a training set of 358,800 pixels and a validation set of 7,313 pixels, which was then tested with a training set of 24,375 pixels. The majority vote classification achieved high overall sensitivity of 95% and a specificity of 92% (95% confidence interval (95% CI) 0.024-0.029) in differentiating malignant from benign lesions. In the pixel-wise classification, the overall sensitivity and specificity were both 82% (95% CI 0.005-0.005). When divided into 4 subgroups, the diagnostic accuracy was lower. Hyperspectral imaging provides high sensitivity and specificity in distinguishing between naevi and melanoma. This novel method still needs further validation.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20739]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste