Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

LAOps: Learning Analytics with Privacy-aware MLOps

Niemelä, Pia; Silverajan, Bilhanan; Nurminen, Mikko; Hukkanen, Jenni; Järvinen, Hannu-Matti (2022)

 
Avaa tiedosto
LAOps_Learning_Analytics_with_Privacy_aware_MLOps.pdf (415.3Kt)
Lataukset: 



Niemelä, Pia
Silverajan, Bilhanan
Nurminen, Mikko
Hukkanen, Jenni
Järvinen, Hannu-Matti
2022

doi:10.5220/0011113300003182
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202303012677

Kuvaus

Peer reviewed
Tiivistelmä
<p>The intake of computer science faculty has rapidly increased with simultaneous reductions to course personnel. Presently, the economy is recovering slightly, and students are entering the working life already during their studies. These reasons have fortified demands for flexibility to keep the target graduation time the same as before, even shorten it. Required flexibility is created by increasing distance learning and MOOCs, which challenges students’ self-regulation skills. Teaching methods and systems need to evolve to support students’ progress. At the curriculum design level, such learning analytics tools have already been taken into use. This position paper outlines a next-generation, course-scope analytics tool that utilises data from both the learning management system and Gitlab, which works here as a channel of student submissions. Gitlab provides GitOps, and GitOps will be enhanced with machine learning, thereby transforming as MLOps. MLOps that performs learning analytics, is called here LAOps. For analysis, data is copied to the cloud, and for that, it must be properly protected, after which models are trained and analyses performed. The results are provided to both teachers and students and utilised for personalisation and differentiation of exercises based on students’ skill level.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20189]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste