Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

SQUIRREL: A framework for sequential group recommendations through reinforcement learning

Stratigi, Maria; Pitoura, Evaggelia; Stefanidis, Kostas (2022-02)

 
Avaa tiedosto
1_s2.0_S0306437922001065_main.pdf (6.504Mt)
Lataukset: 



Stratigi, Maria
Pitoura, Evaggelia
Stefanidis, Kostas
02 / 2022

Information Systems
102128
doi:10.1016/j.is.2022.102128
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202301051138

Kuvaus

Peer reviewed
Tiivistelmä
<p>Nowadays, sequential recommendations are becoming more prevalent. A user expects the system to remember past interactions and not conduct each recommendation round as a stand-alone process. Additionally, group recommendation systems are more prominent since more and more people are able to form groups for activities. Subsequently, the data that a group recommendation system needs to consider becomes more complicated — historical data and feedback for each user, the items recommended and ultimately selected to and by the group, etc. This makes the selection of a group recommendation algorithm to be even more complex. In this work, we propose the SQUIRREL framework — SeQUentIal Recommendations with ReinforcEment Learning, a model that relies on reinforcement learning techniques to select the most appropriate group recommendation algorithm based on the current state of the group. At each round of recommendations, we calculate the satisfaction of each group member, how relevant each item in the group recommendation list is for each user, and based on this the model selects an action, that is, a recommendation algorithm out of a predefined set that will produce the maximum reward. We present a sample of methods that can be used; however, the model is able to be further configured with additional actions, different definitions of rewards or states. We perform experiments on three real world datasets, 20M MovieLens, GoodReads and Amazon, and show that SQUIRREL is able to outperform all the individual recommendation methods used in the action set, by correctly identifying the recommendation algorithm that maximizes the reward function utilized.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20234]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste